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SUMMARY

Equations of motion and associated boundary conditions are developed for
the general nonlinear vibrational behavior of thir conical shells. The
theory is based upon nonlinear strain-displacement relations deduced for
a conical shell from those derived by Sanders for thin shells of compound
curvature, Equations for the bending, buckling, and postbuckling of
conical shells under arbitrary loads are developed also and are shown to
reduce to equations based on more simplified theories for both conical
and circular cylindrical shells and circular flat plates, Various
solution approaches to the nonlinear conical shell vibration problem are
examined, and a new numerical method of solution is proposed and

discussved.
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FOREWORD

The work reported herein constitutes a portion of a continuing effort
being undertaken at Stanford University for the U. S. Army Aviation
Materiel Laboratories under Contract DAAJ02-68-C-0035 (Task 1F162204A17002)
to establish accurate theoretical prediction capability for the static and
dynamic behavior of aircraft structural components utilizing both con-
ventional and unconventional materiazls. Predecessor contracts supported

investigations which led, in part, to the results presented in References
18, 28, 29, 32, and 33.
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Ul’UZ Displacements tangential to middle surface of thin shell of
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Ub Strain energy due to bending, lb-in.
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v Component of the midsurface displacement in the tangential
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Vb Potential of applied edge moments and shears, lb-in.

VL Potential of applied surface loads, lb-in.

Vm Potential of applied edge loads, lb-in.

w Component of the midsurface displacement in the radial
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X Axial coordinate on middle surface, in.
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from the vertex, measured along a generator, in.

x, Distance of the base of a truncated cone from the vertex,
measured along a generator, in.
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a Cone semi-vertex angle, rad

Qﬁ’oﬁ Coefficients in metric form of middle surface of thin shell

of arbitrary shape

€117%297€19 Middle-surface strains for thin shell of arbitrary shape,

in./in.

ex’€¢’7x¢ Middle-surface strains, in./in.

HipoMegityp Middle-surface curvatures for thin shell of arbitrary shape,
1/1in.

Mo sH W Middle-surface curvatures, 1/in,

X9 xp
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§1,§2 Coordinates on middle surface of thin shell of arbitrary
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2, .4
N Mass density of shell, lb-sec”/ft
&) Circumferential coordinate on middle surface , rad
P19 Specific generators located at ¢ = .2 and @ = @y s rad
61,§2 Rotations, rad
én Rotation about the normal to shell middle surface, rad
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INTRODUCTION

All investigations of he free vibrations cf conical shells to date have
used linear theory, mostly based upon Love's first approximation theory

for thin shellsl. Some of the notable earlier studies are those by
Struttz, Federhofer3. Goldbergk, Grigolyuks, Shuman6, Saunders, Wisniewski,
and Paslay{ and Garnets. The last-named author modified the theory to

take into account transverse shear and rotatory inertia effects.

With the development in the late 1950s of the more sophisticated theory
for conical shells (developed specifically for buckling problems) by
Sei.de9 and Singerlo, free vibration studies employing this theory were
later carried out by Seide11 and Weingartenlz. These studies were based
on the linear strain-displacement relations given by Love's first approxi-
mstion with circumferential dispiacements in the curvature terms neglected
and with midsurface inertia terms omitted. Results of these studies
correlated well with experimental data for vibrating conical shells
exhibiting a large number of circumferential waves., This was expected,
since negiect of the midsurface inertias was shown by Reissner13 to be

valid only when a large number of circumferential waves 1is present.

In two other studies, notably those by Chenlh and Weingartenls, the
authors retained the circumferential terms in the curvature expressions
and also included the previously neglected midsurface inertia terms.
Chenla used a Lagrange-equation apprcach in conjunction with the
Rayleigh-Ritz method for a conical shell with classical simple supports.
Again, correlation with experimental data was good for higher mode
numbers, whereas results for a smalil number of waves correlated poorly.
Weingartenl5 used Saunders'16 linear shell equations in conjunction with
a finite-difference scheme introduced by Budiansky and Radkowskil7 for
static analysis of shells. The effects of different boundary conditions

upon the vibrations were assessed, and it was shown that at low wave

numbers the boundary conditions have a marked effect upon the frequencies.
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This was also shown in the earlier work of Seide11 for two different
types of circumferential boundiry restraints of simply supported conical
chells,

To the best knowledge of the authors, no investigation of the vibrations
of thin conical shells using nonlinear theory has been carried out to
date. 1t is therefore the purpose of the present work to develop the
governing equations and the associated boundary conditions for the non-
linear vibrational behavior of a thin truncated conical shell and to
examine and discuss various possible approaches for solving these more

accurate but complex equations.

Recent investigations of the related problem of nonlinear vibraticns of a
circular cylindrical shell have produced some interesting results. In a
major work on the subject, in which midsurface inertia terme are neglected,

oA o2 based upon the

Mayers and Wrennla criticize previous solutions
well-known von Karman-Donnell strain-displacement relations. The authors
carry out a new solution for the classical equations which removes the
basis for criticism and discloses the existence of a nonperiodic vibraticn
behavior, a phenomenon not considered previously. Solutions for a small
number of circumferential waves are obtained also using the more accurate

strain-displacement relations derived by Sanders23.

In the present invescigaticn, the governing equations for the nonlinear
vibrational behavior of a conical shell are developed using nonlinear
strain-displacement relations for a conical shell deduced from those
derived by Sanders23 for a shell of arbitrary shape. The total strain
and kinetic energies of the shell are developed for application in
Hamilton's variational principle; the governing differential equations of
motion and associated boundary conditions are obtained therefrom. As a
special cese, these equations are shown to reduce to the so-called '"clas-
sical' equations of conical shells; namely, those for which the circum-
ferential terms in the curvature and nonlinear midsurface strain expres-

sions are omitted and the midsurface inertia terms are neglected.

Althovgh the present work deals with the nonlinear vibrations behavior
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of a conical shell, with little added effort the goverving equations

and associated boundary conditions for the nonlinear behavior of a
conical shell under arbitrary static and dynamic loads are obtained salso.
These equations are valid for either forced aonlinear vibration probiems,
nonlinear vibration of a prestressed shell,or prebuckling and postbuckling
nonlinear behavior of an arbitrarily ioaded shell. These extended
equations are presented in Appendix I. Linearized stability equations
and boundary conditions using the nonlinear terms developed in this

study are also presented in Appendix II.

The equations derived throughout this investigation are gquite general in
that they reduce (by a set of simple substitutions) to corresponding
equations for circular cylindrical shells and circular flat plates. These
equations are presented in Appendixes III and IV, respectively, and they are

compared with equations derived in previous studies.

Lastly, in attempting to solve the nonlinear vibration problem for a
conical sheil, related work done for the limiting case of the circular

cylindrical shell is examined.

The first known investigation of the nonlinear vibrations of a circular
cylindrical shell was carried out by Reissner24 using the classical
equations (i.e., with midsurface inertia neglected). For linear
vibrations, Reissner assumed that the radial displacement function may be
represented as a chessboard pattern., This assumption was validated by
previous and recent experimental work as reviewed in Reference 18, For
nonlinear vibrations, Reissner assumed that the nonlinearity has a more
pronounced effect on the arbitrary time function, which modifies the
choice of deflected shape, than on the deflected shape itself; conse-
quently, Reissner also used the chessboard pattern for the nonlinear
vibration solution. However, as pointed out by Evensen21, the use of the
chessboard pattern leads to a circumferential displacement that is not a

periodic function of the circumferential coordinzte,

Another solution, which like Reissner's did not satisfy the periodicity
condition, was presented by Chulg. In a later study by Nowinskizo, the

periodicity was taken into account; but as a consequence (as noted by
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Evensen21), a nonzero radial displacement occurred at the end of the
shell, thus violating the assumed geometric boundary conditions of free
support. All results obtained in the foregoing references were based

upon periodic motion, except those of Mayers and Wrennle.

The nonlinear behavior experienced by a circular cylindrical shell should
be experienced as well (perhaps in a slightly modified form) by a conical
shell. Consequently, in SUGGESTED METHODS OF SOLUTION, extension to a
conical shell of the methods of solution used by the cylindrical shell
investigators is discussed and an alternative solution based upon a
modified-Reissner variational principle approach {as introduced by Mayers

28,29

et al. ) is also suggested. Finally, a new direct numerical scheme

for solution is proposed and demonstrated.
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STRAIN-DISPLACEMENT REIATIONS

The nonlinear strain-displacement relations employed in this study are
deduced from those derived by Sandetsz3 for thin shells of arbitrary

shape. In the middle surface, the strains are given by

c.. = [a,U ]-- + (¢152 )
11 102"”215,1 1,t ’izx
w1
€22=qla2[002 gz+°’2,§1"1]‘nz+2“§+92) 1)
1 1
€. = + QU - U« U, ]+
127 2000,°272,6, 7 L LE, T LLE, T 22,8 2 %%
where the rotations ¢a and d& are
]
1
$ ==+=>=W,
1 R 9%
U
2 1
s-—+—w, (2)
% R, & %

and the rotation about the normal to the middle surface is

e - zaa SCTINSRRCTANN ©)

u 51

The general curvature-displacement relations used by Sandersz3 are given
by

1 ]
ny, = ——(& , o + ]
11" ao®,e % ‘bzal,ez
.
*22 = 2 %,e, %t B1%,¢ ] (%)
1 1{1 1
- +e - 80, - &0 ]+-(- -—)
12 ~ 200, zgaz 1LE 2 17,6, ~ 2%,6° T2 (R, TR, &

Equations (1-4) are valid under the following assumptions:

1. The Kirchoff-Love hypothesis holds; that is, a straight line
segment that is perpendicular to the middle surface of the




deformed shell remains perpendicular to the deformed middle

surface while undergoing negligible strain relative to its

original lergth

2. The strains and rotations of line elements on the shell mid-

surface induced by the deformation remain small in comparison

to unity, alcthough the components of the displacement are not

necessarily "emall™,

Thus, the total strains in terms of displacements are

c%x
11

ok
22

*
T2

€12 + 22 K12

By choosing the ccordinates for a truncated conical shell as shown in

Figure 1, the general parameters appearing in equations (1)-(4) may be

written as
gl =

£y

Also,

N
]

I~
1]

-
—

wl'—

X axial coordinate along a generator
? circumferential coordinate
u displacement component in x direction
v displacement component in @ direction
w displacemer.t compcnent in radial direction, positive
inward
1
xsin G
5
0 (5)
cos G
xsin G
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The rotations given by equations (2) and (3) consequently reduce to

Q]. = w’x
C

vcos O+ w,

QZC = xsin (M

u
= v . _L)
an Z(X i v’x x3in

and the nonlinear strain and curvature relatioae for a conical shell

become
- 1.2, 1

€x = u’ + 2 w’x + 2 &nc

v, wcos O ~
€ = £+ oin o +— 1 (w,2 +v2 cost a+ 2vw, cos Q)
® ' 2x sin" ?

1

+t32 °x21 (&)
c
u, v ¥

7xcp =V, + —i—xsin o, e Ot(w’cp + v cos Q)




X XX

v, LTV, cos a w,x
ay = T Y (9
~ X~ sia Q

w -!»2 cos w +2vcosa u cos

- )m 4 Ix I@ l‘ ’w

pod = 3 - - -
XQ =2 Gl x2 sin erz si.n2 (04

Equations (8) and (9) appear as a displacement formulation in terms of a
tangential v-displacement notation. However, they may also be written
in terms of a circumferential v-displacement notation to effect a con-
venient simplification as shown for a circular cylindrical shell by
Mayers et 31.18 Throughout this report, the terms which vanish when
circumferential v-displacements are employed <+ traced by a ~ super-

script, as in the second of equations (8).

At this point another assumption is made; that is, the augles of
rotation q>n about the normals to the shell midsurface are assumed to
remain negligibly smaller than the rotations (‘Pl and ¢2 ) out of the

midsurface throughout the deformation. Therefore‘,: ¢

% =90 (20)

and equations (8) and (9) reduce further to

1 2
x 0 Wy + 2 Yoy
vV, - wcos & & *
e = T4 -0 3 + L (w,2 + v cos® a+ 2vw, cos Q)
@ X X sin 2x sin Q ¢
u, v v, %
Yy = v, +—".p——-'-—+—'.——'(w, + v cos Q) (11)
X X X sin @ X x sin Q"""
Mo T Voayx
*
w, +v, cos Q W,
w o= _m:__giq + (continued)
© 2 . X
x~ sin” Q

sy




1 * *
v, +iv,xco:a v, +vcosQ

- - (12)
" X sin O 2 sin @

As no%ed in the introduction, previous authors studying conical shell

behavior, notably Seideg’u and SLngerlo, have employed simplified formu-

lations of equationgz (11) and (12) by neglecting the circumferential
displacement component and its derivatives in the curvature-displacement
relations. These terms were also neglected in the nonlinear strain-
displacement relations.*

*Throughout this report, the Seide f.ormulati.m:l9 will be referred to as
“classical” conical shell theory, and the terms which are neglected in

said formulation will be traced by a (*) superscript, as in equations
(11) and (12).




TOTAL POTENTIAL FNERGY

The total potential energy U, of the shell in the presence of applied

T
external loads may be expressed as

Up = U+ U +V, +V +V (13)

where Um is the strain energy due to middle-surface stretching, Ub is

the strain energy due to bending, VL is the potential of the applied

surface loads, Vm is the potential c¢f the applied edge loads, and Vb

is the poitential of the applied edge moments and shears.

An analysis of the nonlinear behavior of a conical shell in the presence
of external loads is presented in Appendix I; in Appendix II, the
resulting general stability equations of a conical shell are discussed.
In this section, however, external loads are not considered; instead, the
eguations of motion for the nonlinear free vibrations of a conical shell

are developed,

In the absence of applied external loads, the total potential energy of
the shell is given by the strain energy

U= Um + Ub (14)

The strain energy due to middle-surface stretching may be expressed as

1
-5 f f(Nxex + N(pe(p + Nx(p)'x(p)dA (15)
A

where Nx’ N, and N are the middle-surface forces sghown in the
figure on page 11; € ew, and 7¥$ are the middle-surface strains;

and A 1is the surface area,
Likewise, the strain energy due to bending may be expressed as

- -_ﬂ( KX+M,&p-zqu)nxqgcm (16)

where Mx’ M, and M are the bending and twisting moments shown in

the figure on page 11, and oo uw, and wa are the middle-surface curvatures.

10
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The forces and moments may be expressed in terms of the strains and
curvatures, respectively, through the linear constitutive relations given
by

N = (e + ve ) )
1 - v
Eh
N = + ve ) 17
¢ 1 - y2(€¢ ex > ( )
N = Eh "
Mx = -D("X + vy ) 7
M =-M =D(1 -
X = g i
where
EhS
D= — 19)
12(1 - v7)

Substitution of equations (17) and (i8) into equations (15) and (16)
yields
Eh

1 2
U = 35" [((—' +€ ) -2(1 - v)(e.e - )]dA (20)
LY R { xp 4 'xp
_2 2 _ .2
-3 J;f[(nx # )t T 2 O - g 2108 21)
The use of the relaticnship
dA = x sin @ dx dg (22)

for a conical shell, in conjunction with equations (11), (12), (14), (20), and
{21), ylelds the expression for the strain energy in terms of displacements,

v, -wcos Q
(@

'x sin

2n
U= (U, w,2) +ix

x
0 x

(continued)
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1 . * 2

z 2 ~2 *
4+ ————(w,” + v cos” O+ 2vw, cos Q)
2x sin «
v -wCcos *
1 2 * ~
+ 2v(“’x ta2 v )[E + -—gsin «a * 2 : ("2 <7 "'2 °°32 L 4
2x° sin“a @
' 1-v u,m v Yoy * 4
+ 2w,q’ cos a)]+ = v,x + x sin O ;+ m—a(w, + v cos a)J -
*
D o "z‘ 2 w,w + v,cp cos @ w, g
xsinadxdq;-i--/ w, _+ + =
2 ‘ xx 2 2 x
0 ’] x sin «a
I *
w, +v, cosaQ w,x v, + % v, cos C
+ 2uw, .y + + 2(1-v)| 2 X -
xX x2 31n2 a x x sin @
*
w, +vcosQ 2
c —92———-— x sin @ dx dgp (23)
x sin @
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KINETIC ENERGY

The kinetic energy of the shell is the sum of the kinetic energies
associated with the axial, tangential and radial velocities; that is,

oy h‘;?’ﬁ%z + 2 + '2) inadx d [A
T 7 P (a v v )x sin x de (24)
"X
where P and P, are taken from P = 0 to P = 2n for the entire
shell.

14
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VARIATIONAL PRINCIPLE

The application of Hamilton's principle requires that the simultaneous
first-order change in the Lagrangian (£ = T - U), integrated over a
specified time interval with respect to admissible variations in the
degrees of freedom characterizing the state of strain (namely, u, v, and

w), must vanish; therefore,

(=]
«
S~y

(]

]

[ =]

S’

[~ W

(ad

]

Q

)

[= ]
~ N
[ ]

]

(=]
~
(-9
[ad

]
(=}

—

(25)

O
t
~
(]
[
=
p -
[- W
-~
1]
Q
\

or

fav'r dt - favu dt = 0 s (26)
t
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DIFFERENTIAL EQUATIONS OF MOTION

Appropriate variation of the kinetic energy [equation (24)] yields

6,T = phffﬁﬁﬁ x sin Q dxdg )
P x

6vT = phffw'rﬁ\'r x sin O dxdg g (27)
QX

ﬁw'l.‘ = phffirﬁ"« x sin 0 dxdp )
P X

vheress integration with respect to time gives

(5 3
ﬁu'l' dt = phf [ugu] Z x sin O dxdg - phj]:/; sin @ ifu dxdedt
t ' ¢ X tl

t¢x

ﬁvT dt = phjﬁvbv] x sin O dxdo - ptffﬁc sin O Ypv dxdgit $(28)
t t ¢ X

ﬁwT dt = phfﬁwﬁw] x sin @ dxdo - pt:/:/:/;c sin a Wgw dxd(Pdt

t t @ X

The variation of the total strain energy U 1is

6U = aum + 5Ub (29)

where §( ) = ﬁu v w( ). Substitution of equations (15) and (16) into
b I

equation (29) yields

_1ff
§U = 2 f ﬁ (NX{Sex + GXGNX)+(N<p6€cp + echNcp)+(Nch67xcp + 7ch5Nx(p)]dA
A

(continued)
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1 7‘ . ) ‘
> _[ [(benx + nxﬁﬁx)-f-(dvbnq) + n q:b" q)) 24 wﬁuxq) + x wmxv’ JdA
(30)

Now, for a linearly elastic material the following relations hold for all

force and moment components.
Nbc = ¢ON
MOx = uOM (31)

Consequently, equation (30) for the variation of the strain energy may
be simplified to

6v -f[ j (leiex + N 6€ + qu)ﬁyxqp - uxbn - M 6n + Zqu’bnxv)dA (32)

Substitution cf equations (11) and (12) into equation (32), with

appropriate integration by parts and rearrangement of terms, yields

65U
4 /f[xN +N - N +—-ﬂ=9-6udxdqp+ [xnbu]
1
P x

sin & ¢ sin &
?

N ]
+j sin o OV o dx (23)

*
j‘/’ M N
sin 04 sin a ~ qu, T x cot & - sin Q + ZNKCP + xnxcp,x

vN cos a+ w, N *
+ 2 e LN w, Jcot a| bv dxdy
xQ ’x

X sin &

*

* X, N(p M“p cot O c4"2
+j‘[(xNqu + qu; cot Ot)év]xl do + Y T bv dx
P

X (pl

(34)
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5¢ M M . 2M
W :/:/1 Gy, o+ —aa®E | Txbag | x9,e
sin . X ' xxx T 2 sin Q P,x x sinaQ

| *
+ N_cot w4+ —r— {(w,(P + v cos Cl)Nxcp + x sin U w,xNx],x

e sin o
1 x
- (w, + v cos QN + x sin ¢ w, N 6w dxd
x sin2 a ? P % %P . ¢
: Zqu) ® qu) * |
+¢f J(XMx)’x B Mcp “sina T Gin o (W.q;+ v cos Q) + xw,xNx‘ﬁw
)
- xM_ bw, de
*1

M N
@ E XQ _ 9 *
ﬂ‘ sin & (x 2M ) + 2 (W,(p + v cos Q)

sin ¢ x xXQ,x q
P, x sin Q@

Q.
W, M 2
_cv___x '5 ___s.a._..aw + 2[(M )2] 2 (35)
sin G ‘ X@ P
x sin G 1 x
‘91 1

EQUATIONS OF MOTION IN TERMS OF FORCES, MOMENTS, AND DISPLACEMENTS

When equaticns (23}, (33), (34), and (35) are, in turn, substituted into the
variational formulation given by =quations (26), three nonlinear partial
differential equations of motion (Euler equations) are obtained for the

conical shell in terms of forces, moments, and displacements:

Nx - NQp Nxcp @
Nx,x + X @ x sin & = phu (36)
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* *
N 2N 2M M
e g O . o ) .
X sin O XPsX X X8, % X x sin Q X
* *
[ A~ *
[(w,(L+ v cos ) cot .
- x sin G 1\Icp + w’xqu:: x Ry (37
M 2M M 2M
(XMX) ? XX + W.@ - XP, X0 - P,X - xP,9P
* x2 s:'m2 104 3 2w X x° sin a
L N a+ " Q) + .
+ < sin o cos (w,‘p + v cos qu) X sin aw,xl\x 'x
*
w,(p + v cos &
+ —rE—— Ncp + w’xNxcp ’¢j= phw (38)

EQUATIONS OF MOTION IN TERMS OF FORCES AND DISPLACEMENTS

Through the use of equations (11), (12), (17), and (18), the forces and
moments may be obtained in terms of displacements. First, the forces and

moments are written as functions of the displacements:

vV, - wcos Q

Eh } 1 2 u i
N = u, + 35w, +V[—+ + BN
X g2l 2 70x x x sin @ 22 i o
*
(W,2 5 P G @ 2vw,* cos Q) '
¢ ® ’
Vv, - W cos O *
Eh u ’(p 1 2 2 * 2
N = ——{=+ + (w,” + v cos” Q (39)
¢ 1-v2 X x sin @ sz sin2 N @ >
+ 2vw,” cos O+ v(u, + 2 2))
,CP o] u,x 2 W,x ’
= Ih ’ -—-_Lu’ v Yix *
Nxcp 2(14v) lvsx"'xsincx x+xs1na(w’cp+vc°" Ot)‘ )

and
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w’x 1 ' \
M = -Dw, +. + (w, + v, cos Q)
' l XX X x2 sin2 o @ ’
w)
M= lx —'17"(“’ + v, s W) + v, ' g (40)
X x sin u it ¥ xx’
H x
‘w, +-v, cos O w, + v cos a)
_ ) x 2 ’x P
M = D(1-v), TS = -
xG | X sin U x> sin @ ’ 4

Next, the three equations of motion given by equations (36)-(38) may be

written in terms of forces and displacements by virtue of equations (40);

that is,
Y oY% e
a1 = .o ,
Nx-x * X x sin @ phu {41)
2 * * *
_NSP.&_ N Nxtp D cos O * +2&+w,m+v, cos(}
i (¢ ?
* sin @ A0 x X2 sin o | =x® o x sin «
*
¥ * N +v cgs 0
- v, W,
+1_-‘i(v’ ___) cos O cot ( : )N
2 L5 : x x sin ("
%
+ W,xNx(p = phv 42)
*
4 D cos & 2 V’EE 1 ‘
DY & = (Vv], -4 - ———— N cos @
¢ 2 .2 ¢ Y x /, XSLnal(p
x sin & .
%
- in Q
[(w,:p + v cos u)Nxcp +x sin aw, N ],
*
w’q: + v cos G '
) x sin G N(D + w’xNXCP s ‘ = "th (43)
' ®
. 2 . .
where the harmonic operatcr v, is defined as
R = O+ 30 oy + =50, (44)
‘ ) X sin PP
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4, 2
VC( ) - vzc[vc

()] (45)

EQUATIONS OF MOTION IN TERMS OF DISPLACEMENTS

Equations (41;-(43) may further be writte
by utilizing equations (39). The displac

become

E 5‘ 1

v,:p - wcos O

n in terms of displacements only

ement equations of motion thus

*
1 2 2 ~2

u
l-v‘““’x + 2 Yoy tv x x sin Q

*

1-v § 1
+2W,{PCOS a]"x+'—x—'u,x+§w’ -;-

*
1 2

- — (v, _+ v2 c;s?'

sz sin2 Q

1-v ‘
2x sin a'v’x + x sin Q

+ (w,_ + v ccs «
2 ’
2% sin « ?

2 u v:('n
X X

|
o+ 2vw, cos Q)
? i

X X sin O

*
—(w,q) + v cos Ol"(p

= pu  (46)
v, - wcos Q
2 xsina[ x sin O +x+ . Qo o ™ @
1-v 2x" sin” «
* 1 2 1-y u’g v
(04 - — o &
+ Zw,cp cos Q) + v(u,x + 3 w,x) e + 7 Vo t 3 in 0 x
Yoy * 1-y u’g v Yoy
+xsina(w’tp+vc°sa) ’x+ X v’x+xsina-;+xsina'
* % *
* h2 cos O w,x(p W’W+ v’qxp cos
(w, + v cos O)|+ 2 5 |Yrxx + - + 2 2
? 12"sin ® x~ sin” «
*
- v, ) w, + v cgs a v, = wcosQ
+ 1—E(v, - —Eycos a] - 85 a‘( ? __ ) [2+ £
2 XX X X x sin O v X sin O
(continued)
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* *
! (W,2 + v2coszu + 2vw, cos Q cos N+ v(u, + W, )
. 2. @ @ x 27k
2x sin :
w’X(l-\) u, v w’x % '
2 Vix ¥ X sin La-;+Xsin a(W,(p‘*'vcos Q) ‘=pv
47)
% %5
D cos . 2 V’EE Eh ‘u
2 2 (ch)’ -4 X - 2 cos =
X sin u ¢ !  x- (1-v9)x sin Q l
Vy, = W z0s Q :\: *
i sin Q + 2 : (W:Z + V2 C052 a4+ 2vw, cos Q)
2x° sin“ o ? P
(u +'l‘w‘2)'+‘(w +vcgsa)-1-—vv +L,‘2—._.‘_'.
v ’X 2 ’X ‘ i ,CP 2 ,x - Sin a "
W,
’x % ; 1 2
04 a =
% sin O.‘(w’tp +vcos D +x sin Qw, l U 3 W
V, - W cos *
V{ e +E+__1—"(W,2+v2 cos2 %
X sin G X 2 .
2x" sin” «

hl

*
2vw, cos Q)
¢

]

|

v, =- wcos Q

% {s

sin O

*
. ‘(w,(p+ v cos oc)

|
”x l X sin ¢

e *
-3+ 3 L (w,2 + v2 c352 a+ 2vw, cos Q)
2x sin « ? k7
w, (1-v) U W
—} ] 2 ’ ’SE v Tx
L(u’x * 2 W’x) t 2 [V’x + X sin O x i X sin Oc( ¢

+ v Cz';S U.)}I = - phw (48)
>¢

22

L VLR AR AR I IS TTe :

Y NPy




g+ e et o

BOUNDARY CONDITIONS

The associated boundary conditions which result from appiication of the
variational principle [equations (25)] are given in terms of forces,

moments, and displacements as follows:

(a) along x =x, and x = x

1] 2
N =0 or bu=0 )
*
M _ cos O
wa + X sin 0 0 33 S 0
sin a(xl‘lx),x - Mtp sin O - 2Mx<p,q> + x sin @ w’xNx $ (49)
o5 0) = 0 bu =
+Nxcp(w,cp+vcos o) = or Ow=0
M =0 or 6w,x =0
J
(b) alomg ¢ = ? and ¢ = 9,
= 1y = 1
- 0 or bu=0
*
M cos C
N¢ “xsina 0 SO
- - \ y » .
Mﬁp,ﬁp 2 sin a(Xchp”cp+ X sin O w’xNxcp >(50)
+ N (v, +vcos @ =0 bw =0
\J v cos = or fw =
? e =
M =0 or bw, =0
9 9
J
(c) at_the corners of the segment
M =0 or dw=0 G

X
These boundary conditions may be written alsc in terms of forces and

displacements by using equations (40); thus,
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{a) along x = x1 and x = x2
N = or bu=0 }
* + * o
% v v cos
. D(1l-.) cos .t * 1 T = .
'\x;‘ T . 2 (w’xq‘+ 2 Vrx €98 x )=0 ;
X" sin” Q
or 6v=0
‘ X w’x 1 P * " *v
-stintw,x+vx+2 = (wy, _+ v, cosa)”' g
t x x“ gin“ a % ? F)ox ?
v !
+D sin -"v’ﬁ + L (w + v * cos ) + v w, ] ;
b 8 » 9 » E
x> sin2 G k2t ? 225 1
i
+ 3 0
w v c2s
_ 2D(1-+) 1 2 >
x sin G |7’ x¢ + 37 v, cos U " , (52)
' @
*
+x sin G w, N + Nxcp("’(p+ vecos @) =0 or bw=10
Yox 1 *
w, _+ T + (w, ..+ Vv, cos]=2¢
xx x x2 si.u2 a ¥° ?
or G"’x =0
J
(b) along ¢ = 9 and @ = ®,
Ly 0 or bu=0
*
L 2 . % * *
I\L_+Dc°t - + 3 (w, <+ v, cos Q) + vw, ]=0
& X x x sin « ? xx
or bv=10
b
Dw’x+ L (w +v*cos(x\+vw I
M e T W, . n 7 ’
X x2 sinz L e P XX "o
*
1 W, 4+ V Cos 1
- 2D(1-v) W + 2 V,x cos & - " |
® ’x  (continued)
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+ \v,
xz s:ln2 o P

(c) at the corners

L 0¥ cos @- (w, + v cos Q)/
+ 3 v, cos V,p+ v cos O)/x

25

*
=+ v,(p cos Q) + L P

*
+x sin aw, N +N(p(v,q>+vcos Q=0 or

= {j or

ow =0

6w, =0

ow =12

(53)
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REDUCTION TO CLASSICAL EQUATIONS

A simplified set of equations of motion may te obtained if simplified
strain and curvature relations similar to the well-known von Kirman-
Donnell relations for circular cylindrical shells are employed instead of
the more accurate relations deduced in this study [equations (11i) and
(12) ;. These simplified relations are the same as those used vy Seide
and Singer10 for the stability analysis of comical shells; they may be
obtained by neglecting all terms marked by a (*) superscript in equations

(11) and (12). Thus,

o o 1 w 2 N
€x T Wix T2 Yoy
u v, w cos w,é >
€. =T+ + (55)
a
¢ X x sin 2x~ sin” Q
u, v w,xw,
Y. =V, — I, X @
X X x sin & X X sin J
~
=W,
x XX
w’wm Vs
®, = 3 5+t % g (56)
? X sin &
w
w = Txp 'Q
X¢ x sin Q& 2
X sin O w,

The force-displacement nonlinear equations of motion resulting from sub-
stitution of equations (55) and (56) into the Lagrangian and carrying out
the variations in accordance with Hamilton's principle may be obtained

*
here simply by neglecting the terms marked with a ( ) superscript in

equations (36)-(38); that is,

Y% " Y Moy
Nx,x + X X sin o phu
N 2Nx
x sin at Nxcp,x + x phy (continued)
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D Vcw " X sla o eN{p cos O+ ("’¢Nxcp + x sin w'xNx)’x 7

w, N

+ (I'f%a* w’xNxcp), i'- -phid
P

1f the motion of the shell walls during vibratior is predominantly radial

(as when there are a large number of circumferential waves in the modal

pattern), then equations (57) admit yet a further simplification, namely,

that of neglecting the midsurface irertia terms. The justification for

this simplification is given by Reissner13. Thus, with the midsurface

inertia terms omitted, the equations of motion become

N - N N
P S - X I )
. St V' 4 X sin &
N ZNx
xsi.na"'N x+ b4 = U
xP, (58)
DVl‘w-°—h—-‘N cos ¥+ (W, N + xsin Qw, N)
¢ xsin | o xp x x”’x

= -phw )

Using the first two equations of (58), the third may be rewritten as

AT S D
Dvcw ° [N(p(cos a+ % sin ot Vs sin Q) + Nx(x sin aw, )
T
+ 2N (-9, |= - ph¥ (58a)

Equations (58) agree .ith those presented in Reference 25 for a nonlinear

postbuckling analysis of a conical shell,

The three equations of motion given by equations (58) may be reduced in

number by one through introduction of a stress function F defined by
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Nx F, F, 3\
s X QR (L) S
h 2 2

x sin Q

Yo
ST > 69
N F,

X9 2 ——(F, - =9

h x sin O " ’xgp x J

such that the first two equations of (58) are satisfied identically.

To establish a relationship betweem ¥ and w independent of u and v,

the strain compatibility equation for a conical shell, as employed, for

example, by Seideg,

Y 4 € 2¢ €
29,9 X, XP X, 9P X | XX

+ - - € - + = T(w) (60)

2 X sin G 2 2 P, xx X X
x sin Q X sin «

is used (where I" 18 a function »f w). Substitution of equations (55) into
equation (69) gives

w,xx cos 1 w_,(g 2
T(w) = xsiaa 2 2 w,x(P = w’xquqK " )- x sin” @ w,xw,XJ

(60a)

Substitution of the constitutive law [equation (17)] and equation (59)
intc equetion (60), in conjunction with equation (60a), then yields the
desired compatibility equation in terms of the stress function and radial

displacement only as

w’
VQF = —E——E—E—— lw,z T W, Vs -(—;9) -x sin2 0] Vs Ws
¢ X~ sin” O XQ xx g9 ’x xx

Ew, cos O
—_xx

x sin O (61)

The lateral equilibrium equation may be written in terms of the stress
function F and the radial displacement w by substitution of equations

(59) into the third of equations (58); thus,
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A_hcosa h

DV w - ——lw, F - 2w, F +w, F
c x sin @ " ’xx x2 sinza[,n * o xp ’x¢ ‘e ’xx

+ Z(m) + x sin2 dw, F. ) = -phw (62)
x 5 'x 'x"?x
Equations (61) and (62) together represent the simplified nonlinear
vibrational beliavior of a conical shell. They are the conical shell
counterpsrts of the von Kirman-Donnell squations for circular cylindrical
shells. When equations (61) and (62) are linearized, the resulting

equations are those describing the classical behavior of a conical shell
in free vibration; thus,

4 h cot & .
Dvcw - F’xx + phw 0 (63)

and
Ew cot
bo o o xx
ch = - - (64)

These liaear eqiations were solved by Seide in Reference 1l.
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SUGGESTED METHODS OF SOLUTION

The differential equations (46), (47), and (48) reflect the use of the
complete strain and curvature relations given by equations (11) and (12);
they are three highly nonlinear coupled equations in the three dependent
variables u, v, and w. On the other hand, the simplified "classical™
strain and curvature relations given by equations (55), with the midsur-
face inertia terms neglected, admit reduction to two simultaneous
differential equations involving only the stress function F and the
radial displacement w. This reduced set of two simultaneous equations
(equations (6i)and(62)] is still highly nonlinear and coupled but probably
more manageable in the classical sense than the initial set of three
given by equations (41)-(43). However, the classical equations are valid
only for motion of the shell in which a large number of circumferential

waves is present.

As a first step toward solving the conical shell equations described
above, it would be feasible to employ properly modified techniques used
previously for the limiting case of a circular cylindrical shell. (as

discussed by Mayers and Wrennls).

All of the existing analytical studies nf the nonlinear vibrations of
thin circular cylindrical shells, except for those reported in References
18, 21, and 22, have the inherent assumptions (l) that the radial displace-
ment is representable by a chessboard pattern, (2) that the shell possesses
many circumferential waves (i.e., shallow-shell behavior), and (3) that
the midsurface inertia terms can be neglected. In accordance with
assumptions (2) and (3), all studies have involved the solution of the
classical equations [equations (103) of Appendix III] based upon von
Kérman-Donnell theory*., Assumption (1), however, seems to be intuitively
incorrect. As noted in References 18 and 21, use of the chessboard

pattern for the radial displacement leads to a violation of the periodicity

*Mayers and Wrennl8 also carried out a first-order approximation solution
cf the equation set [equation (98)] based upon Sander's strain terms
with midsurface inertia terms retained.
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condition for the circumferencial displacement v given by

v(x,p,t) = v(x,p,2n,t) (65)
or,
2n
33,¢d¢= 0 (66)

when finite displacements occur,

The fixed-parameter solution for a circular cylindrical shell, first
presented by Evensen22 on the basis of the Galerkin procedure and zgain
by Mayers and Wrenn18 as a special case using the Rayleigh-Ritz approach,
may be extended to the conicai shell case by assuming a radial displace-~
ment which satisfies both the geometric boundary conditions and the

periodicity condition.

I1f the geometric boundary conditions are taken to be those for classical

simple supports, namely

w(x,p,t) w(x2,¢,t) = 0

(67)

v(x,qp,t) v(xy,9,t) = 0,

then a corresponding second-order approximation for the radial displace-

ment w which satisfies the boundary and periodicity conditions may be

taken as
mr {(X-X,) nzAz(t) 2 mr(x-x.)
W= Al(t) sin 17 cos ny + 1 sin *1
X5 =Xy 4xsin cosQ Xy =Xy (68)

where Al(t) is an arbitrary function of time. However, by restricting

the time-dependent coefficients to terms proportional to Al(t) and

Ai(t), the resultant motion is forced to be periodic, although not
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necessarily harmonic.

A Rayleigh-Ritz spproach (as described in Reference 18 for a circular
cylivlrical shell) may then be used by substitution of the assumed
deflecred shape into the compatibility equation [equation (61)] and
obtaining a particular sclution for the stress function F., The stress
function thus obtained and the a:ssumed deflection functior « should lead
to satisfaction of the requirement that the circumferential displacement
v be periodic in 2x., F and w are then substituted into the Lagrangian
written in terms of stresses (and therefore in terms of the stress
function) for midsurface behavior and in terms of w for bending behavior.
The application of the variational principle relative to Al(t) would
thus yield a second-order nonlinear differential equation, which through
a single change of variable may be reduced to two coupled first-order
nonlinear differential equations. These may then be solved bv a standard

Runga-Kuc.*a numerical technique.

The solution obtained in the preceding manner will, as previously stated,
be periodic, Mayers and Wrenn18 waived this restriction for a circular
cylindrical shell by allowing for a free-parameter solution. The
boundary conditions were the same as those stipulated by Evensen22

(free support). The boundary conditions will not significantly influence
the frequencies of vibration when a large number of waves are present in
the axial direction; thus, for long shells, on a minimum energy basis,

the nonperiodic behavior governs.

Extending the approach to a conical shell, an assumed radial deflection
shape may be taken as
mﬂ(x-xl) Zmn(x-xl)

w = Al(t) sin " cos ny + Az(t) cos

+ AS(t) (69)
2

-Xl K-

2 71

where Al(t)’ Az(t) and A3(t) are arbitrary functions of time,

A displacement function of this type was also used in a study of the

postbuckling behavior of conical shells presented in Reference 25.

Next, using the assumed displacement function w, the solution for the
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stress function F is obtained from the compatibility equation

[equatica (61) ], and the parameter A3(t) is then determined by impos-
ing the cuntinuity condition on the circumferential displacement v. The
w and F functions thus obtained are finally substituted into the
Lagrangian (in a manner similar to that described previously for the
fixed-parameter case) and variations are taken with respect to Al(t)

and Az(t). The resulting nonlinear differential equations may again

be solved using a Runga-Kutta numerical technique.

Application of this method to the circular cylindrical shell resulted
in a solution which displayed nonperiodic motion; the same type of

behavior can also be expected in the case of a long conical shell.

The two solution approaches described above involve much greater diffi-
culty vhen applied to a conical shell than when applied to a circular
cylinder, since (1) the clissical equations of equilibrium [equations (61;
and (62) ] for a conical shell are more complicated than those for a
circular cylindrical shell [equations (106) and (107} of Appendix III],
and (2, the stress-compatibility equation for the conical shell is a
diharaonic equation with variable coefficients. Nonetheless, the methods
of solution may still be used and they are presently undergoing further
study in comnection with the overall research effort related to conical
shells,

When the number of circumferential waves is not large, the classical
equations are invalid and should not be used; rather, the eauations of
motion [equations (41)~(43)] based on the general strains and curvatures
equatious (11) and (12)] with retained midsurface inertias should be

i ’ solved. Alternatively, a direct approach may be used by substituting
assumed time-dependent displacement functions directly into the tctal
potential energy as given by equation (23) and applying the variational

principle relative to the assumed time-dependent parameters.

Mayers and Wrenn18 used the latter procedure for a circular cylindrical
shell; however, due to the obvious algebraic difficulties, only one

term in the radial displacement function was retained, thus eliminating
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the possibility of the shell deforming in its typically nonlinear fashion.
As a result of this forced chessboard pattern, the resulting motien was
periodic; however, for very small amplitudes of vib: ~tion, the periodic

solution is an excellent approximation.

When extending this approach to the case of a conical shell, displacement
functions for u, v, and w which satisfy the geometric boundary conditions

for w and the periodicity condition may be taken as

mx(x-xl)
w=A (tj sin ————— cos ng
1 x2-x1 h
m:t(x-xl) 2my (x-x.)
u = 4,(t) cos ————— cos n® + A_(t) cos —————— c0s 2n9y
2 X, x1 3 x, x1
Zmn(x-xl) 5
+ Alo(t) cos —————= 70)
2 72
mr (x-X%_) Zmﬂ:(x-xl)
v = AS(t) sin ———= sin no + A6(t) sin ———— sin 2ng
2 71 2 71
+ A7(t) sin 2no J

Substitution of equations (70) into equations (23)and(24) and the enforce-
ment of the simultaneous vanishing of the first variation of the
Lagrangian with respect to the various Ai(t) functions would lead to a
set of seven second-order coupled nonlinear differential equations. After
a change of the independent variable and subsequent reduction of the

seven equations to fourteen first-order nonlinear differential equations,
the solution is then obtained using a standard Kutta-Merson numerical

technique,

The solution techniques described above all sutfer from a common
disadvantage; namely, the number of terms which may be retained in

the assumed displacement functions are limited as a result of algebraic
complications, However, a numerical approach is presently being studied
in which a gener#l series solution for the various displacements may be

assumed and a large number of terms restained. The method may best be
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understood by demonstrating it for the problem of the nonlinear vibra-

tion of a beam. This is accomplished ia Appendix V.

The proposed method basically involves the selection of assumed displace-

ment functions in the general series form

£
v=2 & (x,0 4(0)
i=1 ’
m
v = & (x,9) A, (1) 1)
i;mﬂ t

n
u-= d, (x,9) A, (L)
ig:m+11 L

where Ai(t)’ i=1,2,...n are arbitrary functions of time.

Substitution of equations (71) into equations (23) and (24) and the

enforcement of the simultaneous vanishing of the first variation of the

Lagrangian with respect to the various Ai(t) (without multiplying out
the series or carrying out the integrations) will lead to a set of n

second-order coupled nonlinear differential equations. After a change
of the independent variable and subsequent reduction of the n second-
order aifferential equations, the solutions may be obtained using the

numerical procedure demonstrated in Appendix V.

The most general set of appropriate displacements for a conical shell
which satisfies the simply supported conditions and periodicity of the

circumferential displacement would be equations (71) with

1,'
Cai(x,cp) = sin iB(x-xl) '2:1 cos j¢ , 1<i<g
J=
ml
&, (x,9) = cos(i-4)B(x-x,) . cos jo , Ml<ism  (72)
i 17,
j=4'+1
n!
® (x,9) = sin(i-m)B(x-¥.) 2. sin i , mtl<isn
1 L =m !
j=m'+1
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whe e

B = —= (13

In easvice, GE(X,;) may be taken as any type of function; the numerical
technique does not differentiate between types of functions and is there-

iore not limited in this respect.

The main mcerit of this proposed numerical technique is that there is
1o necessity of expanding, multiplying, and integrating the assumed dis-

placement functions analytically at any time during the solution. Further

merits and some drawbacks of the method are discussed in Appendix V.

finally, another method of solution, which involves the use of a
modificd-Reissner variational principle, should be investigated.

ihis method was introduced in Refezence 28 and again used successfully
in Reference 29. It involves writing the strain energy of the system in
such a maaner, that Hooke's law [equations (17)] is not necessarily
¢nforced prior to variation for middle-surface stresses and strains
though it is forced for the bending terms. This approach is shown to be
highiy convergent and accurate for both thir plate and shell problems
undergoing finite deflections even in the presence of inelastic deforma-

tions.

fhis method of solution and all the othcrs previously described are

presently being investigated. The results and conclusions are expected

to provide the same level of knowledge for the nonlinear vibrations

and maximum strength of conical shells as has now been developed for flat
plates and rircular cylindrical shells by Mayers et al. 28’29’32’33,
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The governing differential equations and associated boundary conditions
for the noniinear vibrations of a thin, truncated ccnical shell have been
developed by means of Hamilton's principle. The cquations are based upon
the norlinear strain-displacement relations deduced from those developed

bv Sanders for thin shells of arbitrary shape.

Goveining differential equations and boundary conditions have also been
developed for the nonlinear behavior cf a conical shell in the presence
of static and dynamic loads. These equations apply equally well to

forced nonlinear vibration problems, nonlinear vibrations of a prestressed

shell and non!inear prebuckling and postbuckling behavior of an arbitrarilr

loaded shell. Linearized stability equations aand boundary conditions

using the nonlirear terms of this study have aiso been developed.

All equations derived in this report have been shown to reduce (by a set
of simple substitutions) to corresponding equations for circular cylin-
drical shells and circular flat plates. The equations have alsc been
shown to reduce to the so-called "classical” conical shell eguations

when the circumferential displacement terms in the curvature and nonlinear

strain relations are neglected and the midsurface inertias are omitted.

Various methods of solution extending from those applied in similar
investigations of circular cylindrical shells have been presented, and
a modified-Reissner variational principle me thod of sclution has been
suggested, Finally, a new direct numerical solution scheme has been

proposed an! demonsirated analytically.

Future efforts in this area should include implementaticn of the proposed
methods of solution for the nonlinear vibrations of a conical shell and

a comparison of the various methods. The modified-Reissner variational
principle approach and the new numerical scheme should at first be
employed to obtain solutions for the nonlinear vibrations of a circular
cylindrical shell. Ccmparison with the previous solutions should
determine the merits (if any) >f these methods, and it may then be

decided whether they should be appliead to the conical shell problem.

37




. i

Finally, these same methods of sclution should be applied to nonlinear
forced wvibration problems and to the important design problems of the
nonlinear postbuckling behavior and maximms strength of initially

imperfect conicai shells.
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APPENDIX 1

EQUATIONS FOR THE NONLINEAR BEHAVIOR OF CONICAL SHELLS
UNDER ARBITRARY LOADS

Equations for the ncnlinear bechavior of conical shells acted upon by
externally applied arbitrary loads may be derived without significant
further difficulty by adding to the strain energy U [equation (14)]
the potential of the applied loads; that is,

U.=U+V +V_ +V
m

T L b 74)

where UT is the total potential energy of the shell in the presence of
applied loads, VL is the potential of the applied surface loads

(qx’qr" and qz), Vm is the potential of the applied edge loads (ﬁx, Ecp’

4

and Nxcp)’ and Vb is the potential of the applied edge ¢iments and
- M MM o o).

shear forces (Mx, Mcp’ chp’ Qx’ and Qcp‘

The applied-load potentials may be represented as

VL = .ff(qxu + qipv + qzw) x sinQ dxde (5)
¥ x
X @
Vo= -f [(qu + NXQPV) X sinOclZ do :[ IN‘PV + Nxcpu dx (76)
@ X1 X 9
— X
_ Mx W, _ 2
Vb = f [x sinQ (—wa,x + _ux mo T wa)] do
P *1
- @
Mw, _ _ 2
f [ e e gt t O l dx an
X 9,

The required variations are
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6u\’L = -fqu x sine Gu dxdo W
P ox

A g

——

! = - 1 . >
6v"L Ifq(;x sin 6v dxdg

(78)
T X
6'*_\11‘ = -ffqzx sine Ow dxdeo J
P x
- Xy - @
6V = - sin.cﬁxN )’ dp+ N 8u7% ax )
um X Jooxe 2
P 1 x ¥1
6V = - sinaf[xN 5v§2 do + [ [N GV?Z dx g 79
v m o X9 - ¢ a9
1 X ¢
bv =0
wom
/
c‘iuvb = 0
6vvb =0
_ %, ?, (80)
o T s M = = =
Gw\lb = smuf x( X0, ¢ Qx) 6w deo + [(chp,x ch? Ow] dx
x sina ?1
) X
X
*2 1 2
i v M - P X
+ =1n»‘flxMx Gu, | dc t[ o Ou, | dx - 2[[N bu]? )
P % Ix sinx : ¢ 9, X
X1 9 171

Equations (78) through (80) are added into the variational equations

‘cquations (26) ] such that

GU,V’W /(1: - U) de = Gu’v’wf(r SU-V -V -V )ae =0
E t
(81)

where the expressions for 6 T and § U are gi B i
v v given by equations

(27. and (33)-(35), respectively.

The variation results in three Euler equations, which are the same as

those given by equations (36)-(38) with the addition of the surface loads
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9> qcp and 9, respectively, to the left-hand side of each equation.
The equations of motion in terms of stresses and displacements are the
same as those given by equations (41)-(43) with the respective surface
loads added tc the left-hand sides of the first two equations and to the
right-hand side of the third; the same is true for the displacement

equations of motion given by equations (46)-(48).

The resulting boundary conditions are
(a) along x = X, and x = Xy (82)
N =N or b6u=0
%
Mx cos Q _
Nxcp-xsin(l -Nxcp -""—"-'6"'-'0
9 N o *
- xQ, X
(KMX) % Mcp sin O in G (W, + v cos Q) + xw, N_
= x0 - 209 =
xQ sin or bw=10
Mx = Mx or ' = 0
(b) along o= 7 and o= 0, (83)
N = ‘ﬁ or 6u=0
X X -
%*
M cos @
N(p-xsinOC:N(p or b&v=0
T 20 D 0y R -
Teina " M (w,cp + v cos Q)
+ N W, Q(P = X0, X or 5w =0
M = ﬁ or &,’ =
¢ ¢ ®
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v+ at the corners of the segment (84)
M =M or O&w=10
Xwvw X< -

All equations and boundary conditions presented in this appendix reduce

to those of classical conical sheil cheoryg'25 by linearization of the

*
cquations and neglect of those terms marked by a { ) superscript.
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APPENDIX IY

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS FOR THE
STABILITY OF CONICAL SHELLS

Additional definition of symbols:

M,M, M additional moments causev by buckling
x’ g x¥

M M M moments prior to buckling
xo’ qk’ *%

N,N,N additional f- ces caused by buckling
b SN ()]

N ,N ,N forces prior to buckling

xO (Po x"Po

€5 € , 7 linear strain terms

X X

e, €', ¥ nonlinear strain terms

S S )

Linearized stability equations and boundary conditions for a conical
shell may be readily obtained from the general equations of nonlinear

behavior of conical shells derived in Appendix I.

The equilibrium at the time of buckling is obtained by consideration of
the additional work done during buckling. The displacements u, v, and

w are now the additional displacements caused by buckling, and the pre-
buckling displacements are assumed to be small so that the additional
displacements can be related to the undeformed geometry of the shell,

The additional strains are taken as the nonlinear terms of equations (11),

namely¥ |

kg *

2
> 3 (w,2 + v2 cos” QX + 2vw, cos )
? 2x sin & ®

(cor~inued)

*These nonlinear terms differ from those used in previous studies?»10,25
by retention of the tangential displacements terms,
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(85)

_(u,q&vccs))

Ihe iztermal tirces and moments ¥ aad R cf eqguaticsas (32)-(35),
#it2 the ascl’near terms omilted, must sow be replaced by K 4 l.

and 3!9!! respectively, anéd the potestial of tix weabrase fesces
__, and .W.) mst be sdded to the v a-
tioasl equatioss cq-ui-—s (81) ]} wvith the kisetic energy temm omittad.
Sisically, with A represesting the surisce srea, this seans that,

PIIOT Lo hct!m (!

= X +% 8 &5 +3 HE "\

f].ct* x, x°+a¢+ %’ v,”'w. -.."’qa'

-ffi(!‘¢a!¢! G-tfmgfn%) &e—zmwfll'o) &”iﬂ
&

4&‘{»&"'96«’.4&“0 (96)

‘s
the straim emergy stoved durisg bocklisg bv the niddle-surface forces of
the maburkled state; that is

wacre L, is the total potestial esergy dorirg buckling and 'i' is

U: fj: &'+! &'4! &,‘*n [€.1))

The expressicas for NL. N., aad &- are givea by equstioas
i7% through (80).

Aiter eguations (36°-(38) vith the noslisecar terss omitted
iand surface load terns added as per Agppendix ) are also considered,
tim stavility equationr and boundary conditims are cbtaived as

X -2 | |

X + X ¥ + 9,9 = 0 (58)

X,X x z sin &
b 23 . * M |

o o oo + xz , ot zf, + % _ &9
x 3im .2 x2,X x X0, X x X sin G
=
k3 - o~ .
cot i1 "g M i o+, - =0 (89)
x X sin u ‘o X xq,




-

¥. 4+ vcos R
-e

-

*
¥, 4 v cos
+* x sin 1 v +
’ in 'x‘zo' ’x l x sin a ) x;

‘o, B l ' :- 0 (90)
o] 'z

The bowndar; coalitions are*

(a) slong ml and xtxz
lxﬂﬂ or fu=20
»
H wos 2
.x:p+ x sin O =W o b =0
faoa(xM), - M sinOo - 2M 1
sfa (x)x vs Lo 91)
*
+xslna-;,‘lx +(v,g+vcosa)lw=0 or bu=0
(] (]
M=0 or &, =0
(b) slong o=¢9, and o=gq
nw-o or u=0
*
K cos O
Ne xsina -0 MY ed 2l
M -2sina (x4 ), (92)
"L
+ (w, +vcosAN +xsinaw, N =0 or w=0
? () X X% —
(continued)

*Equations (49) -(51), with the nonlinear terms omitted, must also
be used ir the derivation.
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b v ——— T

(¢t at the corners of the segment

Moo= D or bw=0  (93)

-

The stability equations and boundary conditions presented above may also
be written in terms of either forces and displacements or displacements
only by using equations (39) and (40). In this study, however, these
revricten equations may be obtained direc~ly from equations (41)~(43),
(46)-(48), and (52)-(54) simply by deleting the inertia terms and apply-
ing a zero subscript to the forces in the nonlinear terms consisting of

products of forces and displacements.

The stability equations and boundary conditions derived in this appendix
represe~t linear buckiing theory based upon the strains and curvatures
defineu by equations (11) and (12) respectively. All the foregoing
equations reduce to those presented by Seideg, Singerlo, and Schnell25

*
vhen terms marked by a ( ) superscript are deleted.
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APPENDIX III

REMUCTION OF THE GENERAL NONLINEAR CONICAL SHELL EQUATIONS TO
THOSE FOR A CIRCUIAR CYLINDRICAL SHELL

In the present study, general nonlinear equitions for the bending,
buckling, and vibrations of conical shells have been developed. The
geometry of a truncated conical hell irf such that it develops into a
circular cylindrical shell of radius R = x sin & as the semi-vertex
angle « approaches zero. Accordingly, all equations developed in the
present study for a conical shell reduce to those for a circular cylin-
drical shell {(as presented by Mayers and Hrennl8 based or Sanders’

theory) through the simple set of substitutions

x sina=R

a=0

1=0 (%)
x

o=1

where y 1is the tamgential coordinate on the shell middle surface in the
circumferential direction. Some of the more important relationships
derived through use of the above substitution are listed in this

appendix for completeness,

MIDSURFACE STRAIN-DISPLACEMENT RELATIONS (rotation about the normal
neglected).

By virtue of equations (94), equations (11) reduce to

I
& W 2 'x
*
1.2, 2,2, .. °
= = 5 R 95
ey v,y w/R + 2(w,y + v /R + 2vw,y/ ) (95)
*
7xy =V + u,y + w,x(w,y + v/R)

51

e e it Ak i St e A




CURVATURE-DISPLACEMENT REIATICNS

Equations (12) reduce to

no= W,
XX
*
TR + v, /R
® y Oy (96)
- Lo * R
KX(F w wsxy + 2 V, X/

*
When the terms marked by a superscript ( ) are deleted, the equations

reduce to those of classical von Karman-Donnell theory.

TOTAL POTENTIAL ENERGY

The total potential energy is given by

UT=Um+Ub+vL+vm+vb 97)

Reduction of equations (23) and (75) through (77), in conjunction

with equation (97), yields
*

Eh { 1. 22 1,2, 2,2
U, = - (u, +5w, )"+ [v, -wlR+% (W, + V2R
T z(l_vz)yj:/" X 2 x y 2 y

X

’ 2 1 2 12
\ e - X
+ 2vw,y/R,] + 2v(u,x + 7 ¥ x) [v,y w/R + Z(W’y
*

2~ 2 * i-v
+ v /T + 2vw,y/R)] + = [V’x + u,y + w,x(w,y

%
+ v/R) 12

* *
pffl 2 2
dxdy + Zj]tlw’xx +(w,yy+ v,y/R) + Zw’n(w’yy+v’y/R)
yx

* 2
+ 201V (W, + v, /2R : dxdy /:/ (q, + qv + q,) dxdy
yx
- - % - - 7 =
- [-Nu+N v] dy -fJ [Nv+N_ u] dx -§ [-Mw,
X Xy o y Xy - x ’x
y 1 X L y

x y
= % = - = ¥

gty T wa)]{ dy '/['Myw’y ey ox Qywi, o (98)
& 1
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The expression given by equation (98), with the applied load terms
deleted, was used by Mayers and Wrenn18 in obtaining a first-approxima-
tion solution to the free vibratioa behavior of a circular cylindrical

shell undergoing large displacements and moderate rotationms.

FORCE-DISPLACEMENT EQUATIONS OF MOTION

Reduction of equations (41)-(43), with the addition of the
applieda load terms, yields

Nx,x + ny’y = chu - 9,
*
N +N_ 4 ORHRE@,S +w, )+, 2L a3
YsY  XY,X xxy yyy yy 2 xx’
E
- [(w,; + VIRON o, N J/R = ohi - q
* * (99)

4 2
\ s -
DY w + D(V v,,y/R Ny/R [(w,y + v/R)Nxy + w,xNx],x
*

- + = - .o
[(w,y v/R)Ny + w’xny]’y q, phii

BOUNDARY CONDITIONS

Equation (49) -(51) reduce to

(a) along x=x, and x = x

1 2
N =N or 6u=0
X X -_—
* —
N +M /R=N or 6v=20
Xy Xy Xy -
%

- 2M + N (w, + v/R 10
X,X Xy,y xy( y /R) {008

+w, N = Q - MXy,y or 5w=0
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(101)
or 6u=0
or &v=0
*
M - 2M + N (w, + v/R
Y,y Xy, X y(’y Y
+ w,xny = Qy = MXy,x or fv=0
M =M or w, =0
y y - y
(c) at the corners of the segment (102)
L = Mxy or w=0

CLASSICAL NONLINEAR EQUATIONS

Reduction of equations (58) yields the classical nonlinear differential

equations of motion for a circular cylindrical shell having a large

number of circumferential wavesls’zz; that is,
+ N =0
X,X Xy,y
N + N =0 (103)
Y,y Xy,X

4 ., [ 33
DV w - Ny/R < (w’XNX + w’nyy) ‘% - (w’xny + w:yNy) = -phw

Using the first two of equations (103), the third can be rewritten as

4 .
o - = -pb-
DYV w Ny/R (wa’xx + Nyw’yy + Znyw’xy) pbhvi (104)

The stress function definition of equations (59) reduces to

N = hF, (continued)
X Yy
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= 'hF: (105)
The compatibility relationship [equation (61) ] reduces to

4 2 ,
gF= E(w,xy - w’xxw’yy) - Ew,xx/R (106)

and the lateral equilibrium equation [equation (62)] becomes

4 _ q ¢
Dy w - hF,xx/R = h(w’xxF’yy 2w,xyF,xy + w’ny’xx) = -phW {107)

Equetions (106) and (107) represent accurately only the free nonlinear
vibrational behavior of a circular cylindrical shell having a large
number of circumferential waves, Various approximate solutions for
periodic behavior have recently been obtained for these equations,
notably those by Chulg, Nowinskizo, and Evensenzz. The most recent
solution, based on the energy formulation of the problem, is that
obtained by Mayers and Wrenn18. In their work, previous periodic
solutions are discussed and their validity is questioned on a minimum-

energy-criterion basis.

Equations (106) and (107) with the radial inertia term omitted are one
of the equation sets commonly referred to as the von Karman-Donnell
equations governing the large deflection behavior of thin plates and

shells in the presence of midsurface forces,

All of the conical shell equations derived in Appendix I for nonlinear
behavior under arbitrary loads and in Appendix II for stability behavior
may also be easily reduced to corresponding equations for circular

cylindrical shells through the substitutions given by equations (94).
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APPENDIX IV

REDUCTION OF THE GENERAL NONLINEAR CONICAL SHELL EQUATIONS TO THOSE
FOR A CIRCULAR FLAT PLATE

In Appendix I11 the limiting case of a circular cylindrical shell is
considered and the basic equations describing its nonlinear tehavior are
vasily derived from the conical shell equations. Another limiting case
occurs when the semi-vertex angle « approaches the value /2. 1In this
instance, the general nonlinear conical shell equations reduce to those
for a circular flat plate, with a concentric hole, by virtue of another

simple substitution; that is,
Q= gx/2
xsinQ=x=r (108)

INPLANE STRAIN-DISPIACEMENT RELATIONS (rotations about the normal

neglected)
By virtue of equations (108), equations (11) reduce to
1 2
Er = u,r + 5 v, r
w+v,)/r+w 2/2r2 (109)
= (u , ,
‘9 P 9
7r$ =, + (u,cp -v/r+ w,rw,m/r
CURVATURE-DISPLACEMENT RELATIONS
Equations (12) reduce to
wo=w,
r rr
n =W /r2 /x 1
n@ ’ g0 W, (110)
<l =w’ /[' - W, /rz
ry r
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TOTAL POTENTIAL ENERGY

The total potential energy is given by

UT ES Um + Ub + VL + Vm + Vb (111)

Reduction of equations (23) and (75)-(77) in conjunction with

equation (ll1) yields

Eh ( 1 2.2 2,22
U .—.—-——-—ﬂ (u,_ + 5w, ) +{(u+v,)/r+w, /2777
T 2(1--»«2)(“ [ro 2 i i

1 2 2 2
+ 2¢(u‘r + > w,r,)[(u + V’Cp) /r + w,@/Zr ]

+ -l-él [v,r + (U’CP -v/r+ W, W, /rJ2

2 JJ

Pr
2(1-v) (w, (p/r -w, /r ; rdrdo - ff (qru + q(pv + q,%) rdrde
@r

Ty
f[r(Nu+N v)] deo f[Nv+N(pu] dr
© 1 P

)
! rdrde
(T

+

2 2 2 2
LI + [w,w/r + w,r/r] + 2v w,rr[w,w/r + w,r/r]

1%

+

- - - 5 -
..~/-[1-(-Mrw,r + Mrcpw’cp/r + Qrw)]]T do -f [-M(pw’cp/r

© 1
_ - %
+M w, /r+Quw] dr
/e T )

FORCE-DISPLACEMENT EQUATIONS OF MOTION

teduction of equations (41) -(43), with the addition of the
applied load terms, yields

N + (N ~-N)/e+N /r=phﬁ-q
r,r r P rY,Q 5 (continued)
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)y
Dvr W - (1/1')[(&:7,(;,?{1_‘p + rw’rNr)’r + (w,qy¢/r + "’rqu)’qg

where

2 2 - 2
COSEIEOI=G O, + O, fe+ (O, Ji]

e

= -phd + q,

EOUNDARY CONDLTIONS

Equations (

(a aleng r=1r, and r=r

49) -(51) reduce to

1

(b) along ¢ = 9 and ¢ = P

N =N

Y re
N =N

) 9
M J/r-2M /[r - 2M

©,Q o Iop,r
+ w,¢Nm/r + w’rNr¢ = Q¢ -
M =M

¢ ©
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+ 2Nr¥9/r + Nr r - ohv - qcp

¢

Su =

(113)

(114)

(115)

(116)




(c) at _the corners of the segment

1'{1_(P = Mrcp (117)

CLASSICAL NCHLINEAR EQUATIONS

Equations (58) reduce to

N +H -N +N =0

r,r r P ry,Q
N +2N + N = (118)
@, re ry,r

4

- ] o o o0
Dv_w (1/r)[w,(pNrcp + rw,rNr),r + (w,qqur + w’rNrw)’¢] phéi
Using the first two of equations (118), the third may also be written as

5 2 2 .
Dy, w - N¢(w’x + w,¢q/r ) - Voot ¥ 2Nx¢ﬁd,¢/r - w,r /x) = -phi

P
(119)
The stress function definition of equations (59) reduces to
N/h=F, /r+F /r2
r !r L) ’W
= 120
N‘p/h F\ v (120)
N /h=F, [r-F /r2
xgp ‘e g
The compatibility relationship [equation (61)] reduces to
64 F = (E/rz)[w & W, W - (w, /1) -rw, W, ] (121)
r *ro ‘rr g o Tt ’r ’rr
and the lateral equilibrium equation [equation (61)] reduces to
Dv* w - (h/f2)(w, F, - 2w, F, 4w, F, +2(, F,), /
vr w [w’rr ’W w!rcp ’r(P !W ’rr w’¢ ’¢ !r r
i 2. _ x 9
+ r(w’rF’(p) ’r/r + r(w’rF’r)’r - 2“)‘91"!‘9/7' 1= -phw (122)

Equations (121) and (122) describe the nonaxisymmetric, nonlinear

vibrational behavior of a thin circular plate, When axial symmetry
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is assumed, all derivatives with respect toc ¢ vanish and the

governing equations become

4
vr F -Ew,rw,rr/r

4 (123)
Dv} w = h(w,rF,r),rIr - phé

Thesc simplified equations are equivalent to those used in some
recent studies of the nonlinear dynamical behavior of flat circular

shells, notably those by Yamaki‘6 and Bauer27.
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APPENDIX V

SUGGESTED NUMERICAL SOLUTION PROCEDURE WITH JLLUSTRATIVE
APPLICATION TO THE NONLINEAR VIBRATIONS OF A BEAM

Adcitional definition of symbols:

A cross-sectional area of beam

1 cross-sectional area moment of inertia
Lm,i,r integers

L length of beam

Mri generalized mass functions

9 generalized coordinates

u axial displacement of beam

w transverse displacement of beam

X axial coordinate of beam

z transverse coordinate of beam

o] mass density of beam

¢k(x) functions of x

Wi functions defined by equations (130)

The proposed numerical solution for the nonlinear vibrational behavior
of a conical shell can best be explained by demonstrating its use for

the simple case of the nonlinear vibration of a beam.

The expression for the total strain energy of a beam in the absence of
applied loads may be obtained directly from its conical shell counter-
part [equation (23)] as

L L
uv=2 [ea +-1-w2)2d +-]=fEIw2 dx (124)
T2 (u’x 2 Vi) XT3 ? xx
o o
and the kinetic energy is

L
T = %pr(&z + P dx (125)
(o]

General displacement functions may be assumed in the form
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I3
s X 80 4

n (126)
u= 3 & q(v
1=4+1
Substitu.ion of equations (126) into equations (124) and (125) and the
enforcement of the simultaneous vanishing of the first variation of the
Lagrangian (T-U) with respect to the various qi(t) lead to a set

of m second-order nonlinear differential equations; that is,

£
1=1Mriq1+"’r=° lsrs<ig
- (127)
1;§;fgd_qi + wr =0 Hl<srsm
where
L
m, = for o0 800 ax (128)
o
and

L
¥
U S p : :
r” 3, " fEA[ ) @'(x)qi(t)] 121 ¢ (g, (D] & L(x)dx
[o] =

1{‘; =
=£+l i
L P 3
o L fEA[ Y & !0q (t)] ® '(x) dx
2 i i “r
o i=1
L £
+ fEIcI): 2 & (0q (thx (L<rs4)
o i=1
L ) 2 (129)
1 (] ?
vr=§fEA[ ) fpi(x)qi(t)] ® ' (x) dx
o i=1
(continued)
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L
+f EAD "(x) i & i(x)qi(t)dx (Ll < r<m=)
s T =gl

The two nonlinear second-order differential equations given by equations

(127) may be reduced to 2m first-order nonlinear equations by the
substitutions

qi = Qi i = 1, 2’ seeeell (130)

Equations (127) then become

4 .
i"2:11~(ri(21+¢rr=0 lsr<i
(131)
m [
M G0 ssrsm

Before the numerical solution is obtained, functions di(x), i=1, 2, ...
..m must be assumed, These may be trigonometric cr polynomial in nature,
or in fact, any type of function which satisfies the geometric boundary
conditions of the problem. Once these functions are selected, the

problem is given initial values

qi(O) 9,

i (132)
qO

q,(0) = 3§
i
and the solutions are obtained numerically using a greatly modified

Runga-Kutta technique introduced by Rosser30 and slightly modified
2
further by Skappel‘l.

For a given time increment vt, the initial values of q; and &i

are used and the wr functions are computed through numerical

integration over x per iteration., This process continues until the
required history is obtained. The order of approximation £ and m must,

of course, be given.
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The main merit of this proposed numerical approach is that there

is no need to expand the assumed displacement functioms by

multiplying out the infinite series and collecting terms in the various
q ‘s, This problem is prohibitively severe, especially in the case of
nonlinear problems wherein infinite series must be raised to the third
power such as evidenced in equation (129). This is precisely

why the bulk of nonlinear structuval analyses to date are limited to
low-order approximations; in the case of the nonlinear vibrations of
thin shells, such low-order approximations do not allow for the devel-
opment of nonperiodic motion as demonstrated by Mayers and Wtennw. It
is also evident from equations (129) that the method is not limited to
homogeneous beams, since the numerical process need not discern any
type of continuity in the axial directiomn.

With the use of the numerical approach proposed here, the order of the
approximation (that is, the number of terms retained in the series) may
be selected at will and limite. convergence tests may be run, the
limitation being the amount and expense of computer time budgeted.
Finally, the numerical process itself is known to be smooth, and no
numerical roundoff difficulties are anticipated.
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